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We consider transport of dilute two-dimensional electrons, with temperature between Fermi and Debye
temperatures. In this regime, electrons form a nondegenerate plasma with mobility limited by potential disor-
der. Different kinds of impurities contribute unique signatures to the resulting temperature-dependent Drude
conductivity, via energy-dependent scattering. This opens up a way to characterize sample disorder composi-
tion. In particular, neutral impurities cause a slow decrease in conductivity with temperature, whereas charged
impurities result in conductivity growing as a square root of temperature. This observation serves as a precau-
tion for literally interpreting metallic or insulating conductivity dependence, as both can be found in a classical
metallic system.
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I. INTRODUCTION

Electron transport is conventionally understood within the
Fermi-liquid theory framework.1 In a Fermi liquid �FL�,
screening of the offset charge is very efficient due to large
density of states. As a result, effective disorder potential for
quasiparticles is always short ranged. The latter leads to
temperature-independent Drude conductivity, while interac-
tion effects provide corrections to the Drude transport in the
powers of small parameter T /�F, where T is the temperature
�kB=1� and �F is the Fermi energy. These corrections origi-
nate due to scattering off the Friedel oscillations1,2 and due to
temperature dependence of the random-phase approximation
�RPA� screening.3

What happens when the carrier density n is reduced so
much that the system becomes nondegenerate, T��F? In this
case the Fermi energy is irrelevant and the system is essen-
tially a classical plasma �Fig. 1�. Such a situation may occur
in actively studied clean dilute heterostructures4–10 where n
�1010 cm−2, with record densities down to 7�108 cm−2.8

These densities correspond to �F�10–100 �V�0.1–1 K.
Transport in such a system will depend on the strength e2 /a
of electron interactions relative to temperature �here a
=1 /��n is the Wigner-Seitz radius and the dielectric con-
stant 	 is included into the definition of charge, e2→e2 /	,
for brevity�. For strong interactions, e2 /a�T, we have a
strongly correlated semiclassical electron “liquid” whose
collective modes are likely to affect transport.11,12

Here we consider the two-dimensional �2D� transport in
the opposite, weakly interacting regime,

�F, e2/a 
 T 
 �D. �1�

We assume that temperature is high enough so that carriers
form a classical weakly interacting plasma yet is well below
the Debye temperature �D so that the phonon contribution to
transport can be either neglected or subtracted in a controlled
way. Transport is then dominated by the practically un-
screened potential disorder. Such a situation can become rel-
evant in the cleanest heterostructures �e.g., Ref. 8�, where,
for the lowest densities, the interaction energy e2 /a�5 K is
one order of magnitude below the Debye temperature. With
increasing sample quality, the carrier density decreases and

the applicability range �1� widens. Another system where the
present approach may be applicable is graphene with the
substrate-induced gap, as described toward the end of the
paper.

We show that in the regime �1�, the Drude conductivity
��T� becomes strongly temperature dependent. Its tempera-
ture dependence originates from the energy-dependent impu-
rity scattering cross section. Remarkably, different kinds of
potential impurities �e.g., charged, neutral� can now be dis-
tinguished by qualitatively different energy dependence of
scattering, yielding unique signatures in the resulting ��T�.
These signatures could be used to characterize notoriously
unknown potential profile for high-quality 2D samples.

In particular, for the important example of charged impu-
rities within a 2D layer, we show that the conductivity grows
as ��T as long as temperature is below a few Rydberg of
the host material �Ry=me4 /2�2 where m is the effective car-
rier mass�, crossing over to �T for T�Ry �Fig. 1�. The
latter linear T dependence13 is thereby practically unobserv-
able for two-dimensional electron gases �2DEGs� in GaAs
heterostructures, since the phonon contribution dominates
above �D�Ry�60 K. Hence, the single-particle explana-
tion of Das Sarma and Hwang13 of the observed4–7 conduc-
tivity increase with temperature does not apply. For the other
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FIG. 1. 2D transport in the presence of charged disorder for rs

= �e2 /a� /�F�1. FL calculations �Refs. 1–3� provide small correc-
tions to the Drude transport at T
�F. For nondegenerate carriers,
the perturbative result �T �Ref. 13� is valid for T�Ry,e2 /a,
while for e2 /a
T
 Ry we show that �T1/2. For �F�T�e2 /a
the system forms a strongly correlated plasma where both Drude
�Ref. 11� and hydrodynamic �Ref. 12� effects can be relevant. For
e2 /a��F, i.e., rs�1, weakly interacting Fermi gas crosses over to
weakly interacting classical plasma at T��F; the result �T1/2

then holds for �F
T
Ry.
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practical example, the strong neutral impurities, the conduc-
tivity is shown to decrease with temperature �as described
below�.

As a result, the superficial distinction between a “metal”
�d� /dT�0� and an “insulator” �d� /dT�0� based simply on
the sign of the derivative d� /dT, does not hold—indeed,
both behaviors are possible in a classical 2D metal �1�. Of
course, a true insulator is characterized by localized states as
T→0, leading to activated conductivity dependence. Such a
low-T analysis is beyond the scope of this work which con-
siders only sufficiently high temperatures above the onset of
localization.

In what follows, we first obtain the general result �6� for
the T-dependent Drude conductivity in regime �1� in terms of
the energy-dependent impurity transport cross section �tr���,
then we discuss the resulting ��T� for different kinds of po-
tential disorder. Finally, we remark on the systems where one
can practically observe the temperature-dependent Drude
conductivity.

II. DRUDE TRANSPORT

The kinetic equation in the presence of an external in-
plane field E� ,

eE�v��f0 = − ��
−1�f , � = mv2/2 �2�

is written in terms of the momentum relaxation rate

��
−1 = ni�tr���v���, �tr =� d�

d�

d�
�1 − cos �� . �3�

Here d� /d� is the differential scattering cross section and ni
is the area density of impurities. The particular energy de-
pendence of the scattering rate ��

−1 stems from that of the
transport cross section �tr. The isotropic dc conductivity
follows14

� =
ne2�̄

m
, �̄ =

� d�����− ��f0�

� d���− ��f0�
, �4�

where we assumed energy independence of the 2D density of
states in the case of the parabolic band. In the classical re-
gime �1�, quantum interference effects are irrelevant due to
strong dephasing. As long as T�e2 /a, one can also neglect
electron-electron interactions, such that the equilibrium ve-
locity distribution is Maxwellian,

f0���v�	 = e��−��/T, e�/T = �F/T 
 1. �5�

Equations �4� and �5� yield

��T� = �0�
0

�

�d�e−�
 ����
�tr���



�=�T

, �0 �
e2

h

n

ni
, �6�

where the energy-dependent wavelength ����=2� /k���, �k
=mv���. In other words, the temperature dependence of the
Drude conductivity is determined by the energy dependence
of the transport cross section in the units of wavelength. For
simple estimates, Eq. �6� gives

��T� � �0
�T

�tr�=T
, �7�

where �T=2�� /�2mT is the temperature wavelength.
When multiple kinds of impurities are present, the scat-

tering rates add up according to the Matthiessen rule. Thus
the total transport cross section entering Eq. �6�,

�tr��� = c1�tr
�1���� + c2�tr

�2���� + . . . , �8�

where cj =ni
�j� /ni is the fraction of impurities of the sort j,

and ni=� jni
�j� is the total impurity concentration.

III. CHARGED IMPURITIES

For the e2 /r potential, the exact 2D differential cross-
section has been found in the seminal 1967 work of Stern
and Howard,15

d�c

d�
=

� tanh ��

2k sin2��/2�
, ��v� �

e2

�v
. �9�

Here � is the scattering angle and the momentum transfer
q=2�k sin�

2 . Result �9� has two distinct limits. For small
energies, �
 Ry, the parameter ���1, and the cross sec-
tion is classical �indeed, it is � independent when tanh ��
�1�. Conversely, for high energies ���Ry�, cross section
�9� with tanh ����� coincides with the Born approxima-
tion. Such a classical-to-quantum crossover is specific to two
dimensions, whereas in three dimensions the Rutherford
cross section coincides both with the classical result and with
the Born approximation.16

The corresponding 2D transport cross section �3� reads

�tr
c = �2��/k�tanh �� . �10�

Notably, it is finite, with all scattering angles contributing
roughly equally. This should be contrasted with the well-
known logarithically divergent transport cross-section for 3D
Coulomb plasma17 �“Landau logarithm”�, dominated by
forward-scattering processes.

The conductivity then follows from Eqs. �6� and �10�,

�c�T� = �0�
0

� �d�e−�

� tanh ��
, �2 =

Ry

�T
. �11�

Conductivity �11� grows with T �Fig. 2� since the impurity
scattering �9� weakens for faster moving carriers.

The asymptotic behavior of Eq. �11� is �c� 3
4�0

��T /Ry
at T
Ry and �c� 2

��0T /Ry at T�Ry. Practically, the
switching between the two limits occurs when T�4.5 Ry
�Fig. 2, the two asymptotes cross�. For T�5 Ry we agree
with Ref. 13 where the Born approximation ��

−1

�ni�
2e4 /�� was utilized in Eq. �3� �corresponding to the

Fermi golden rule�. The limit ��T is novel and relevant in
the parameter range �1�.

IV. NEUTRAL SCATTERERS

For any axially symmetric scatterer, the transport cross
section is given by15
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�tr =
2

k
�

m=−�

�

sin2��m+1 − �m� , �12�

where �m is the scattering phase shift in the channel with
orbital momentum m.

Consider an example of strong neutral 2D scatterers
within the electron layer. Physically, they can originate from
the interface roughness or neutral atomic defects in a hetero-
structure. For sufficiently small �F and T, the carrier’s energy
may become much smaller than the potential barrier which
such a potential creates. It is then reasonable to model the
scattering potential as being infinitely large within a disk of
radius a, and zero outside. In this case, the scattering phase
shifts tan �m=Jm�ka� /Ym�ka� are given in terms of the Bessel
functions of the first and second kind, leading to

�tr
n �� 8a/3, ka � 1

�2/k
�2/4+ln2�2/��ka�	 , ka 
 1.� �13�

Here ln �=0.577. . . is Euler’s constant. Note the anoma-
lously efficient scattering at wavelengths �=2� /k�a ex-
ceeding the impurity size, �tr

n �� / ln2�� /a��a, i.e., the scat-
tering cross section is determined by the carrier wavelength
rather than by the impurity size, thereby greatly exceeding
the “geometric” limit. This is a known universal signature of
low-energy 2D scattering.16

Estimate �7� yields

�n�T� � �0 � min�ln2�a

T
,� �a

T
�1/2�, �a �

�2

ma2 . �14�

The exact conductivity �n�T� for strong neutral scatters cal-
culated numerically using Eqs. �6� and �12�, is shown in Fig.
2. Its asymptotic behavior for small and large T agrees with
the qualitative estimate �14�. In order to compare with the

Coulomb scattering, we took the disk radius a=aB to be
equal to the Bohr radius aB=�2 /me2, such that �a�Ry; aB
�10 nm for GaAs.

We also note that weak short-range scatterers yield
temperature-independent conductivity. Indeed, the differen-
tial cross section d� /d�= f���2 in the Born approximation

fBorn���=−mŨ�q� /�2�2�k �Ref. 16� yields �tr
Born� for

q-independent formfactor Ũ�q� corresponding to a short-
ranged potential U�r�. Equation �6� then results in �

=2��0��2 /mŨ�2=const.

V. DISORDER SPECTROSCOPY

In realistic clean low-density samples multiple kinds of
disorder, e.g., Coulomb impurities and neutral scatterers, are
present. The conductivity �6� and �8� can then display a fairly
complex sample-specific dependence on temperature, gov-
erned by relative contributions of different kinds of scatter-
ers. Figure 2 shows an example with cc=cn=0.5.

Qualitatively different T dependences �11� and �14�
present a natural way to characterize disorder in clean 2D
samples. For that one needs to operate at very low carrier
densities n�109 cm−2, when a temperature window �1�
opens up. Fitting the conductivity �with the phonon contri-
bution subtracted� to result �6� and �8� will yield the disorder
composition �ni

�j��. This way, the T-dependent transport can
serve as the disorder spectroscopy. The connection with
spectroscopy is not accidental. Formally, the conductivity is
proportional to the Laplace transform �0

�d�e−������ of the
quantity ����=�� /�tr���, where �=1 /T.

VI. CHARGED DISORDER IN GaAs
HETEROSTRUCTURES

Result �11� based on the exact cross section �9� predicts a
novel ��T conductivity dependence, characteristic of the
classical limit of scattering �9�. The latter can be relevant for
transport in clean dilute heterostructures.4–10 So far, the ob-
served conductivity grows approximately linearly with tem-
perature around T�1 K.4–7 From the present analysis, the
single-particle explanation13 for this observation based on
the Born scattering cannot hold for GaAs, since, according to
Fig. 2, the crossover to the Born regime would occur at T
�300 K which is practically inaccessible due to the domi-
nant phonon scattering.18,19 The apparent discrepancy be-
tween the present single-particle theory yielding ��T, and
the experiments4–7 strongly indicates the predominance of
collective effects in transport. This is not surprising, since
typical Coulomb energy e2 /a�20 K �corresponding to n
=1�1010 cm−2�, while the measurements were done for at
least order-of-magnitude lower temperatures, in which case
using the Maxwell distribution �5� in Eq. �4� is unjustified
from the outset. For the lower densities, n�109 cm−2, the
present approach may apply, as long as the phonon contribu-
tion is controllably subtracted in range �1�.

Can the linear �RPA� screening affect the temperature de-
pendence �11�, and in particular, the crossover temperature
T�5 Ry? Below we argue that screening will only weaken
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FIG. 2. �Color online� Temperature-dependent Drude conductiv-
ity �6� in the units of �0= �e2 /h�n /ni. Solid blue line: charged im-
purities, Eq. �11�, together with its asymptotic limits �thin dashed
lines�. Switching from �T1/2 to �T occurs at T�4.5 Ry.
Dashed red line: neutral impurities �impermeable disks with radius
a=aB�. Dash-dotted green line: 50% charged and 50% neutral im-
purities, with the same total ni.
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the dependence ��T� and cannot lead to ��T�T at low tem-
perature.

Physically, screening changes the shape of the impurity
potential in the following way. It fully preserves the strength
of the e2 /r potential for distances r�as shorter than the
screening length, and cuts off the 1 /r behavior for r�as,
where as= T

2�e2n
= a

2
T

e2/a �in the Fourier space, 2�e2 /k
→2�e2 / �k+as

−1�	. The linear �RPA� screening is a mean-
field effect, valid when the density fluctuations within the
screening volume as

2 are small, fulfilled under the condition
nas

2�1 equivalent to T�e2 /a, compatible with limit �1�.
This has the following consequences: �i� for �F�T�e2 /a
relying on the RPA screening is unjustified. The single-
particle transport calculation based on the Maxwell distribu-
tion �5� is also unjustified. Thus the approach13 of Das Sarma
and Hwang does not apply to the experiments4–7 even if the
authors were to use the correct scattering cross-section. �ii�
For T�e2 /a, screening becomes asymptotically irrelevant
for the Drude transport. Indeed, consider the region r�as
where the electron “feels” the unscreened impurity potential.
Upon entering this region, its typical kinetic energy greatly
exceeds the Coulomb field, T�e2 /as. Thus the scattering
phase shifts yielding cross section �9� have parametrically
large room to accumulate between e2 /T
r
as, leading to
its nonperturbative limit. Moreover, the residual screening
�truncation of the potential for r�as� would further weaken
the ��T� dependence, since, according to the above calcula-
tion �cf. Eqs. �6� and �14�	, the conductivity due to short-
range disorder decreases with temperature. Thus the initial
��T dependence would only weaken when the residual
screening is taken into account. As a result, the explanation13

suggested for the apparent linear growth of the conductivity
with temperature,4–7 does not apply; the observed linear
�and, generally, power law8� T dependence of the low-
temperature conductivity remains an exciting unresolved
problem.

VII. GRAPHENE WITH CHARGED DISORDER

The nonrelativistic scattering considered above can be ap-
plied to graphene samples where Dirac mass m=� /vF

2 can
originate, e.g., from symmetry breaking between sublattices,
such that gap ��10–100 meV.20,21 Half-filled band corre-
sponds to chemical potential �=−� counted from the bottom
of the “parabolic” band. The graphene electron system is
nonrelativistic and nondegenerate as long as T
�, since
�F=Te−�/T
T �Eq. �5�	. When electron interactions �con-
trolled by dielectric environment� are weak, �g=e2 /�vF
1
where vF�106 m /s, the effective Rydberg Ryg=�g

2� /2

�. Hence, cf. Fig. 1, the conductivity �T1/2 for T
Ryg
and �T for Ryg
T
�. For strong interactions, �g�1,
Ryg�� and the regime �T never plays out. For T�� the
system becomes relativistic, the cross section scales as the
wavelength,22 and the T dependence of the Drude conductiv-
ity �T2 comes solely from that of carrier density nT2.23

VIII. SUMMARY

To conclude, we considered temperature-dependent Drude
transport in nondegenerate 2D electron systems. The Drude
conductivity due to charged disorder behaves classically, �
T1/2 for temperatures below a few Rydberg, while neutral
disorder results in decreasing ��T�. These signatures can be
utilized in determining disorder content of clean 2D samples
in limit �1�. The decrease in the conductivity while reducing
temperature does not necessarily signify a transition to an
insulating state.
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